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An implicit two-dimensional non-hydrostatic model
for free-surface flows
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SUMMARY

An implicit finite volume model in sigma coordinate system is developed to simulate two-dimensional (2D)
vertical free surface flows, deploying a non-hydrostatic pressure distribution. The algorithm is based on a
projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure
term in the momentum equations is excluded and the resultant advection–diffusion equations are solved.
In the second step the continuity and the momentum equation with only the pressure terms are solved to
give a block tri-diagonal system of equation with pressure as the unknown. This system can be solved by a
direct matrix solver without iteration. A new implicit treatment of non-hydrostatic pressure, similar to the
lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption
all through the water column. This treatment enables the model to evaluate both free surface elevation and
wave celerity more accurately. A series of numerical tests including free-surface flows with significant
vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between
numerical results, analytical solutions and experimental data demonstrates a satisfactory performance.
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1. INTRODUCTION

Numerical simulation of free-surface flows based on incompressible Navier–Stokes equations
(NSE) is extensively applied in river, estuarine and coastal studies. With the rapid increase in
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computer power in recent years, three-dimensional (3D) models are extensively developed and
applied for such problems. One of the main difficulties of such models is the proper handling of
free surface moving boundary, especially for the cases such as short period waves. The moving
free surface forms the upper boundary of the computational domain; however, its position also
constitutes a part of the solution yet to be defined. In many 3D free-surface models, it is assumed that
the vertical acceleration is small so that the idea of hydrostatic pressure can be applied. However,
this statement is only applicable for simulating flows where the horizontal scale of motion is
much larger than its vertical scale. For cases such as short period waves, rapidly changing bed
topographies, and stratification due to strong density gradients, the hydrostatic pressure distribution
is no longer valid and employing a dynamic pressure distribution, based on the complete form of
NSE, is indispensable.

In recent years, the development of non-hydrostatic models has been the topic of many research
activities. Chorin [1] developed an explicit projection method that obtains the projected intermediate
velocities after solving advection and diffusion terms explicitly at each time step, and then corrects
the projected velocities by solving the pressure Poisson equation (PPE). Although the projection
method may cause splitting errors in some applications [2], it has the advantage of using different
schemes for different stages. Mahadevan et al. [3] proposed a non-hydrostatic ocean model using
a semi-implicit control volume method. Stansby and Zhou [4] developed a two-dimensional (2D)
vertical flow model for simulating the non-hydrostatic problem, using a semi-implicit time stepping
method. Casulli [5] planned a semi-implicit, fractional step technique which obtained the non-
hydrostatic pressure in two steps. Other recent developments in the non-hydrostatic models can
be found in Li and Fleming [6], Lin and Li [7], Kocyigit et al. [8] and Chen [9]. Recently a fully
non-hydrostatic implicit algorithm based on finite difference scheme was suggested by Namin et al.
[10, 11] and Yuan and Wu [12, 13]. The algorithm solves the NSE and the free-surface boundary
condition simultaneously and forms a block tri-diagonal system with the unknown horizontal
velocity. Consequently a direct matrix solver can be applied without any iteration.

Many non-hydrostatic models [3, 6, 10, 11, 14] use hydrostatic pressure assumption at the top
layer. In these models, a large number of vertical layers are necessary to simulate non-hydrostatic
free-surface flows [15] and in particular wave propagation. Some models proposed a correction
to the hydrostatic relation at the top layer [5, 9, 16]. The non-hydrostatic pressure at top-layer has
not been correctly applied in models based on PPE or projection method. Yuan and Wu [12, 13]
planned an integral technique to remove the top-layer hydrostatic assumption under a staggered grid
framework. In their model, the vertical momentum equation is integrated from the centre of the top
layer to the moving free surface. The top-layer pressure is expressed as a function of the free-surface
elevation (hydrostatic pressure component) and the vertical acceleration (non-hydrostatic pressure
component). Their results demonstrate that by applying non-hydrostatic pressure distribution to
the top layer, phase errors are noticeably reduced in the simulation of dispersive waves.

Since in two-dimensional (2DV) and 3D non-hydrostatic problems, the size of the resulting
system of equations is large, the simulation time becomes a restricting criterion. In some models,
iterative algorithms are deployed to solve the matrix system which is time consuming [5–7, 15].
More recently for 2DV implicit algorithms Namin et al. [10, 11] proposed a method that yields
a block tri-diagonal system of equation which can be solved without any iteration and save the
computational cost.

In this paper, a finite volume model for solving the 2D free-surface flow in the vertical plane
is presented. Unlike the finite difference models developed by Namin et al. [10] and Yuan and
Wu [12] in which the equations are solved simultaneously in one stage, the algorithm of current
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work is based on projection method which solves the complete 2D Navier–Stokes equations in two
steps. First the pressure term in the momentum equations is excluded and the resultant advection–
diffusion equations are solved. In the second step the continuity and the momentum equation with
only the pressure term are solved to give a block tri-diagonal system of equation with pressure as
the unknown. This system of equations can be solved by a direct matrix solver without iteration.
Since the main bulk of the CPU time is spent for second step, deploying time splitting method and
excluding nonlinear terms in this step reduces the size of matrix system noticeably and decreases the
execution time as compared to Namin et al. [10] and Yuan and Wu [12] models. Furthermore, one
is free to use different numerical schemes for each stage. With this algorithm, the kinematic free-
surface boundary condition is solved simultaneously with the momentum and continuity equations
in second step, so that the water elevation can be obtained along with the velocity and pressure fields
as a part of the solution. The sigma coordinate grid system has been chosen as the computational
mesh, which enables the model to simulate free-surface flows over irregular geometries. The
model is capable of simulating free-surface flows without using hydrostatic pressure assumption at
the centre of free-surface layer. A non-hydrostatic pressure approximation for free-surface cells is
derived, which calculates pressure gradient and vertical accelerations by implementing free surface
dynamic and kinematic boundary conditions. This method which is different from that of Yuan
and Wu [12] enables the model to simulate both free surface elevation and wave celerity more
accurately.

Section 2 presents the governing equations together with boundary conditions. The numerical
method is explained in Section 3. In Section 4, the model is validated by four tests, including a
linear progressive short wave, solitary wave propagation over constant and variable water depths
and nonlinear progressive short waves. Numerical results are compared with analytical solutions
or experimental data to show the validity and accuracy of the model.

2. MATHEMATICAL FORMULATION

The governing equations used to describe the 2D vertical, incompressible flows are continuity and
momentum equations. Figure 1 shows the physical domain bounded by the moving free surface,
z = �(x, t), and the bottom, z = − h(x, t). The conservative form of the equations is expressed as

Figure 1. Sigma coordinate system with uniform grid size over depth deployed for 2DV calculations.
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follows:
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where t is time; x , z are coordinates in horizontal and vertical directions, respectively; u, w are
components of velocity in the x and z directions, respectively; P is pressure; � is the density of
water; g is the gravitational acceleration; and �t is the eddy viscosity coefficient.

The pressure has been divided here into two parts namely, the ‘hydrostatic pressure’ and ‘excess
pressure’ (�P∗) as

P =−�gz + �P∗ (4)

Substituting Equations (4) in Equations (2) and (3), the 2DV momentum equations can be written
in the form
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Since the bottom surface may not be regular, the kinematic boundary condition at the impermeable
bottom is

u
�h
�x

+ w = 0 (7)

Similarly, the kinematic boundary condition at the moving free surface is

��

�t
+ u

��

�x
= w (8)

where � is the surface elevation. Integrating the continuity equation (1) over the water depth
and applying the Leibniz’s rule with the kinematic boundary conditions (7) and (8) gives the
free-surface equation

��

�t
+ �

�x

∫ �

−h
u dz = 0 (9)

2.1. Boundary conditions

At impermeable bottom and wall boundaries zero normal velocity is applied. For viscous flows
no-slip boundary condition is considered. In non-viscous flows, tangential velocity gradient at wall
boundaries is set to zero. Atmospheric pressure is assumed at free surface elevation. Measured
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laboratory or theoretical velocity distributions in the vertical direction are adopted as inflow bound-
ary conditions. Sommerfield radiation boundary condition together with sponge layer technique is
implemented at outflow boundaries to eliminate wave reflection. As suggested by Yuan and Wu
[13], a modified version of artificial damping term representing the sponge layer is used at the
right hand side of Equation (5)[

�

(
x − x0

l

)2 ( zb − z

zb − zf

)]
u, x � x0 (10)

where x0 is the beginning point of the sponge layer; l is the length of the sponge layer; zf and zb
stand for the free surface and the bottom, respectively; and � is the damping strength coefficient.
If x<x0 the artificial damping term is set to zero.

At the end of the sponge layer, the following radiation boundary condition is applied where �
is any flow parameter which can be �, u, or w and c is the wave celerity.

��

�t
+ c

��

�x
= 0 (11)

3. NUMERICAL METHOD

In this study, a finite volume approximation is used to discretize the governing equations and
boundary conditions. A staggered grid mesh in sigma coordinate system with a set of M×N cells,
respectively, in longitudinal and vertical direction is employed. The sigma coordinate system is
a special non-orthogonal curvilinear system, which fits the surface and bottom boundaries of the
domain. The major assumptions for this system are the constant number of vertical grids along the
whole domain and the curvature applying only in the longitudinal direction. It should be stressed
that in the present finite volume model the term ‘sigma coordinate’ refers to the special grid layout
applied to the computational domain and no transformation of equations have been applied as
required by finite difference approach. After each time step, the grid layout is modified to fit the
new surface elevation boundary.

The velocity components are defined at the sides of each cell, the pressure defined at the cell
centre, and surface and bottom elevations are defined at the centre of the upper and lower side of
the corresponding cells of the water columns, respectively. Figure 2 illustrates the location of the
main variables.

3.1. Derivative approximations

A common approach in the application of sigma coordinates is to transform the governing equations
from Cartesian into the sigma coordinate system [7, 12] and then discretize the resulting equations.
In this study ‘finite volume’ method has been deployed whereby mass and momentum are fully
conserved.

The x derivatives of an arbitrary quantity � and a control volume having nj edges, being
expressed as

��

�x
≈

nj∑
j=1

� j�z j
Ar

(12)
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Figure 2. Presentation of staggered grids and the positions of the variables.

Figure 3. Presentation of the surrounding grids of: (a) even grids; and (b) odd grids,
involved in x derivative calculation.

where � j and �z j refer to the average values of � on the j th edge and the projected length of the
j th edge in the z direction, respectively, and Ar is the area of the control volume. Applying the
above relationship to the control volume presented in Figure 3(a), and calculating the values of
u2i,2k+1 and u2i,2k−1 from the average value of the four surrounding velocities, then x derivative
of the horizontal velocity around the point (2i, 2k) may be written as(

�u
�x

)
2i.2k

≈
2∑

j1=1

3∑
j2=1

r2i,2kj1, j2 um2i ( j1),n2k( j2) (13)

where

m2i (1) = 2i − 1, m2i (2)= 2i + 1
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n2k(1)= 2k − 2, n2k(2)= 2k, n2k(3) = 2k + 2

r2i,2k =

⎡
⎢⎢⎣
s2i,2k−1

4�z2i
−�z2i−1

Ar
+ s2i,2k−1

4�z2i
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4�z2i
−s2i,2k+1

4�z2i
s2i,2k−1

4�z2i
+�z2i+1

Ar
+ s2i,2k−1

4�z2i
− s2i,2k+1

4�z2i
−s2i,2k+1

4�z2i

⎤
⎥⎥⎦

Ar=�x�z j is the area of the control volume, �z j is the space interval in the vertical direction
of column 2i , which for an equidistant sigma coordinate case, does not vary with k, s2i,2k−1 and
s2i,2k+1 are the slopes of the longitudinal edges of the control volume, located at the location of
2i, 2k − 1 and 2i, 2k + 1 (i.e. lines BC and AD in Figure 3(a)), respectively. The derivatives of the
pressure and other quantities located on the even column and even row numbers, as illustrated in
Figure 3(b) can be derived from the above procedure by shifting the formulation from 2i to 2i +1.

3.2. Numerical techniques

A finite volume method using a fractional step algorithm is deployed, which solves the governing
equations in two major steps. In the first step, the momentum equations excluding the pressure
gradient term are solved. This step is subdivided into two stages, namely ‘advection’ and ‘diffusion’
stages. In the second step, the continuity equation, together with the momentum equations without
advection and diffusion terms are solved. In this step first, the vertical and horizontal velocity
are expressed as functions of pressure. Second, substituting these relationships into the continuity
equation yields a block tri-diagonal matrix system with the pressure as the unknown, which can
be solved by a direct matrix solver without iteration using double sweep algorithm [10–13].

3.2.1. Step I. In the first step the momentum equations (5) and (6), are solved without the pressure
gradient term. In stage one velocities are advected using the known velocity field at the previous
time step n, to obtain the new intermediate velocity field u∗and w∗ where

u∗ − un

�t
= −

[
�(u2)

�x
+ �(uw)

�z

]n
(14)

w∗ − wn

�t
= −

[
�(wu)

�x
+ �(w2)

�z

]n
(15)

A Fromm [11, 17] upwind explicit numerical scheme is used to solve advection stage. In the next
stage the diffusion terms are solved to find second intermediate velocities u∗∗ and w∗∗ wherein

u∗∗ − u∗

�t
= �

�x

(
�t

�u∗∗

�x

)
+ �

�z

(
�t

�u∗∗

�z

)
(16)

w∗∗ − w∗

�t
= �

�x

(
�t

�w∗∗

�x

)
+ �

�z

(
�t

�w∗∗

�z

)
(17)

Crank Nicholson scheme (CNS) is deployed to solve Equations (16) and (17). It has to be mentioned
that none of the above-mentioned intermediate velocities necessarily satisfy the continuity equation.
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3.2.2. Step II. In the second step the continuity equation (1), together with the momentum equations
without advection and diffusion terms are solved simultaneously giving(

�u
�x

)n+1

+
(

�w

�z

)n+1

= 0 (18)

un+1 − u∗∗

�t
+
(

�

(
�P∗

�x

)n+1

+ (1 − �)

(
�P∗

�x

)n
)

= 0 (19)

wn+1 − w∗∗

�t
+
(

�

(
�P∗

�z

)n+1

+ (1 − �)

(
�P∗

�z

)n
)

= 0 (20)

Using Equations (19) and (20) and applying the derivative definitions, the horizontal and vertical
velocities can be written in the following form:

un+1
2i−1.2k = d2i−1.2k − ��t

2∑
j1=1

3∑
j2=1

r2i−1,2k
j1, j2 P∗n+1

m2i−1( j1),n2k( j2)
(21)

wn+1
2i.2k−1 = d2i.2k−1 − ��t

(
P∗n+1
2i.2k − P∗n+1

2i.2k−2

�z2i

)
(22)

where

d2i−1,2k = u∗∗
2i−1,2k − (1 − �)�t

2∑
j1=1

3∑
j2=1

r2i−1,2k
j1, j2 P∗n

m2i−1( j1),n2k( j2)
(23)

d2i,2k−1 =w∗∗
2i,2k−1 − (1 − �)�t

(
P∗n
2i,2k − P∗n

2i,2k−2

�z2i

)
(24)

The weighting factor �, is taken as 0.5. Equations (21) and (22) define each velocity component in
terms of the pressure located upstream and downstream of these velocity components, respectively.
By substituting these values into the continuity equation (18), the velocities can be eliminated. To
do so, first the derivatives of the velocities at the new time level n + 1 can be expressed for the
new velocities as defined by Equations (21) and (22), respectively, as(

�u
�x

)n+1

2i.2k
≈

2∑
j1=1

3∑
j2=1

r2i,2kj1, j2u
n+1
m2i ( j1),n2k( j2)

=
2∑

j1=1

3∑
j2=1

r2i,2kj1, j2dm2i ( j1),n2k( j2)

−��t
2∑

j1=1

3∑
j2=1

r2i,2kj1, j2

(
2∑

j3=1

3∑
j4=1

rm2i ( j1),n2k( j2)
j3, j4 P∗n+1

mm2i ( j1)( j3),nn2k ( j2)( j4)

)
(25)

(
�w

�z

)n+1

2i.2k
≈ d2i,2k+1 − d2i,2k−1

�z2i
− ��t

(�z2i )2
(P∗n+1

2i.2k+2 − 2P∗n+1
2i.2k + P∗n+1

2i.2k−2) (26)
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Substituting Equations (25) and (26) into the continuity equation (18), the velocities are eliminated
giving an equation in terms of the pressures as

��t
2∑

j1=1

3∑
j2=1

r2i,2kj1, j2

(
2∑

j3=1

3∑
j4=1

rm2i ( j1),n2k( j2)
j3, j4 P∗n+1

mm2i ( j1)( j3),nn2k ( j2)( j4)

)

+ ��t

(�z2i )2
(P∗n+1

2i.2k+2 − 2P∗n+1
2i.2k + P∗n+1

2i.2k−2)

=
2∑

j1=1

3∑
j2=1

r2i,2kj1, j2dm2i ( j1),n2k( j2) + d2i,2k+1 − d2i,2k−1

�z2i
(27)

3.2.3. Water surface condition and the pressure equation of the upper layer. The following equation
can be written for the mass continuity for the column 2i :

�n+1
2i − �n2i

�t
+ 1

�x

nk∑
k=1

(��z2i+1u
n+1
2i+1,2k − ��z2i−1u

n+1
2i−1,2k + (1 − �)�z2i+1u

n
2i+1,2k

−(1 − �)�z2i−1u
n
2i−1,2k) = 0 (28)

where nk is the number of layers. The implicit weighting factor �, is taken as 0.5. If hydrostatic
pressure assumption is accepted for the top layer

�n+1
2i = P∗n+1

2i.2nk

g

The idea of applying hydrostatic assumption at the top layer under a staggered grid mesh has been
addressed [6, 8, 10, 11]. Apparent phase error is observed as a result of adopting this assumption. In
contrast, by applying fully non-hydrostatic pressure at the top layer, the calculated wave amplitude
and phase are significantly improved and are well compared with the analytical solutions [12, 13].
The method applied by Yuan and Wu [12, 13], explicitly expresses the top-layer pressure in terms
of hydrostatic pressure and vertical acceleration components. In the present study the top layer
pressure gradient and vertical accelerations are treated implicitly, similar to the solution of lower
layers, by implementing free surface dynamic and kinematic boundary conditions. Following the
CNS, vertical momentum equation (20) in column 2i from the centre of top layer, to the free
surface is approximated by

wn+1
2i.T − w∗∗

2i.T

�t
+ �

(
P∗n+1
2i.S − P∗n+1

2i.2nk

�z2i/2

)
+ (1 − �)

(
P∗n
2i.S − P∗n

2i.2nk

�z2i/2

)
= 0 (29)

where wn+1
2i.T = (wn+1

2i.2nk−1 + wn+1
2i.2nk+1)/2 is vertical velocity at top-layer; w∗∗

2i.T = (w∗∗
2i.2nk−1 +

w∗∗
2i.2nk+1)/2 is intermediate vertical velocity at top-layer, obtained after step I ; P∗n+1

2i.S = g�n+1
2i
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and P∗n
2i.S = g�n2i are pressure at surface water level. By substituting them into Equation (29)

wn+1
2i.2nk−1 + wn+1

2i.2nk+1 − w∗∗
2i.2nk−1 − w∗∗

2i.2nk+1

2�t
+ �

(
g�n+1

2i − P∗n+1
2i.2nk

�z2i/2

)

+ (1 − �)

(
g�n2i − P∗n

2i.2nk

�z2i/2

)
= 0 (30)

Substituting �n+1
2i from Equation (28); un+1

2i−1.2k from Equation (21); wn+1
2i.2nk−1 from Equation (22);

and wn+1
2i.2nk+1 from continuity Equation (18), into Equation (30), the velocities are eliminated and

the pressure equation of the upper layer is obtained as follows:

+��t.�z2i
2�t

2∑
j1=1

3∑
j2=1

r2i,2nkj1, j2

2∑
j3=1

3∑
j4=1

rm2i ( j1),n2nk( j2)
j3, j4 P∗n+1

mm2i ( j1)( j3),nn2nk ( j2)( j4)
− 3�

�z2i
P∗n+1
2i.2nk

+ �

�z2i
P∗n+1
2i.2nk−2 + 2g��z2i+1(��t)2

�z2i�x

nk∑
k=1

2∑
j1=1

3∑
j2=1

r2i+1,2k
j1, j2 P∗n+1

m2i+1( j1),n2k( j2)

−2g��z2i−1(��t)2

�z2i�x

nk∑
k=1

2∑
j1=1

3∑
j2=1

r2i−1,2k
j1, j2 P∗n+1

m2i−1( j1),n2k( j2)

=+2�g�t (1 − �)

�z2i�x

nk∑
k=1

(�z2i+1u
n
2i+1,2k − �z2i−1u

n
2i−1,2k) + w∗∗

2i.2nk−1

2�t
+ w∗∗

2i.2nk+1

2�t

+2(1 − �)

�z2i
P∗n
2i.2nk − 2g

�z2i
�n2i − d2i.2nk−1

�t
+ �z2i

2�t

2∑
j1=1

3∑
j2=1

r2i,2nkj1, j2 dm2i ( j1),n2nk( j2)

+ 2�g�t

�z2i�x

(
nk∑
k=1

��z2i+1d2i+1.2k −
nk∑
k=1

��z2i−1d2i−1.2k

)
(31)

3.2.4. System of equations. By writing the equations of (27) for the pressure points of 2k=2, 4, . . . ,
2nk − 2 for each column, together with the pressure equation of the upper layer (31) for the last
point (i.e. 2k = 2nk), then the following system of equations can be obtained:

A1
i P

∗n+1
2i−2 + A2

i P
∗n+1
2i + A3

i P
∗n+1
2i+2 = Bi (32)

where P
∗n+1
2i =[P∗n+1

2i,2 , P∗n+1
2i,4 , . . . , P∗n+1

2i,2k , . . . , P∗n+1
2i,2nk] is the unknown pressure vector for

column 2i and A1
i , A

2
i and A3

i are the 2D coefficient vectors for the pressures in columns 2i−2,
2i , and 2i + 2, respectively. For the upstream or downstream known pressure boundaries, only

the diagonal members of the matrix A2
bou have to be set to one, with all other members of the

coefficient vectors being set to zero. In this case, the vector on the right hand side of the equation
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has to contain the known boundary pressures. For the case of a known velocity then the main
procedure can be followed, together with some minor modification given as: (a) setting r Bou,2k

j1, j2 = 0
and (b) setting dBou,2k = uBou,2k where the index Bou, being an odd integer, denotes the boundary
column number and uBou,2k is the known boundary velocity.

3.2.5. Solution algorithm. A tri-diagonal block matrix system can be formed by writing Equation
(32) for all the even columns giving⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2
1 A3

1

A1
2 A2

2 A3
2

A1
3 A2

3 A3
3

...
...

...

A1
i A2

i A3
i

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3

...

Xi

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

B3

...

Bi

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(33)

Here the unknowns are Xi = P
∗n+1
2i . To solve this system of equations a procedure similar to the

double sweep algorithm [10–13] can be applied, in which the elements are vectors instead of
scalars.

Having calculated the pressure values the velocities can be calculated using Equations (21) and
(22) and then the new surface elevation can be obtained by applying Equation (28).

3.2.6. Radiation boundary condition. The radiation boundary condition (11), is discretized as

(�n+1
IB + �n+1

IB−2) − (�n
IB + �n

IB−2)

2�t
+ 0.5c

(
��

�x

)n+1

IB−1
+ 0.5c

(
��

�x

)n

IB−1
= 0 (34)

where IB= 2M+1 for �= u and IB= 2M for � = w or P∗. (��/�x), can be obtained by applying
Equation (12).

4. MODEL VALIDATIONS

4.1. Linear progressive short wave in deep water

A linear progressive short wave in deep water assuming an inviscid flow is a good example
for representing the effects of hydrodynamic pressure distribution on model results. The wave
propagates from left to right along a 700m long, 10m deep wave flume, with the initial water
elevation being set zero. A sinusoidal velocity distribution, with wave amplitude being A= 0.1 (i.e.
1% of the water depth), is imposed at the left boundary to simulate the action of the hinge-type wave
maker. A combination of a sponge layer and a radiation boundary condition is applied at the outflow
boundary. The wave period is T = 3.588 s. The analytical solution for linear wavelength is L = 20m
and wave celerity is c= 5.575m/s. The linear wave theory is valid in the case since the wave
steepness, 2	A/2L = 0.031. Details of analytical solutions of the linear progressive wave can be
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Figure 4. Comparisons of free-surface elevation for a linear progressive wave test (t = 200 s), between
analytical solutions (solid lines) and numerical results (circles) from different models: (a) non-hydrostatic

model with hydrostatic pressure assumption at the top layer; and (b) fully non-hydrostatic model.

found in [18]. The numerical parameters used in this test case are: �x = 1m, �z = 1m, �t = 0.1 s.
In Figure 4 different results obtained by applying a hydrostatic approximation at the top layer and
the non-hydrostatic treatment of this layer are presented. Noticeable phase error is observed, when
the hydrostatic approximation is applied at the top layer. On the contrary, non-hydrostatic pressure
treatment at this layer yields a more accurate simulation of the wave amplitude and celerity. In
Figure 5 comparison of dynamic pressure field and velocity are given. The velocities and dynamic
pressure are also shown to be very close to the exact results.

4.2. Solitary wave propagation in a constant water depth

This test is performed to evaluate the capability of model in simulating non-linear terms i.e.
advection, in NSE. According to the theory, a small amplitude solitary wave propagates in a
constant water depth without changing its form, amplitude and velocities [19]. This is a basic test
performed by many wave simulation models. Here we choose the same wave condition selected
by Yuan and Wu [12]. In this test again an inviscid flow is considered. The amplitude of solitary
wave, and the uniform water depth are taken as A= 1.0m and h = 10.0m, respectively. A uniform
M×N = 1000×10 cells with the length of L = 2000m is considered as computational domain and
�t is selected 0.1 s. c= √

g(h + A) = 10.388m/s is wave celerity based on theory, so the Courant
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Figure 5. Comparison of dynamic pressure field and velocity for a linear progressive
wave test between analytical solution and numerical results at t = 200 s. The unit of

numbers on dynamic pressure contours is kPa.
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Figure 6. Comparisons of the free-surface elevation for solitary wave propagation in a constant water
depth between numerical results (circles) and analytical solutions (solid line) at t = 45, 90, 135 and 180 s

(wave propagation from left to right).

number is Cr = c�t/�x = 0.519. The velocity based on the analytical solution [20] is imposed as
left boundary condition. At the right, the radiation boundary condition is applied. In order to start
from a zero initial condition, the position of wave crest in t = 0 is selected at x = −150m i.e. out
of the computational domain. The comparison of the free-surface elevation between the numerical
results and analytical solutions at t = 45, 90, 135 and 180 s, is demonstrated in Figure 6. The model
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Figure 7. Comparison of u and w at the water surface for solitary wave propagation in a constant water
depth between numerical results (circles) and analytical solutions (solid line) at t = 45, 90, 135 and 180 s

(wave propagation from left to right).

gives good estimates of both the surface elevation and celerity. Figure 7 shows the comparisons of
horizontal and vertical velocities at surface between the numerical results and analytical solutions.
The numerical results are in very good agreement with analytical solutions, confirming the model
predicts the hydrodynamic pressure and nonlinear terms very well. Figure 8 demonstrates some
differences between analytical solution and the numerical results achieved by Yuan and Wu [12],
especially in back side of the wave. In contrary the present numerical simulation clearly shows
better agreement with analytical solution.
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Figure 8. Comparison of the free-surface elevation, u and w at the middle elevation of the
water depth for solitary wave propagation in a constant water depth between the numerical
results of the present model (circles), analytical solutions (solid line) and numerical prediction

of Yuan and Wu [12] (deltas) at t = 45.

Figure 9. Flume geometry for solitary wave propagation over variable water depth.

4.3. Solitary wave propagation in a variable water depth

The ability of the model to simulate nonlinear wave propagation over uneven water depths is
evaluated by comparing its results with a set of analytical/theoretical solution and experimental
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Figure 10. Comparison of the free-surface elevation for solitary wave propagation over variable water
depth at locations 1, 2, 3 and 4 between numerical results (solid line), theoretical predictions (dashed

line) and estimated experimental data for no viscous damping (circles).

data originally reported in Madsen and Mei [21] and referred by Yuan and Wu [12]. The so-called
‘fission phenomenon’ described in [19, 22] is the main feature that is investigated in this part
of the study. The set-up of the experimental flume is shown in Figure 9. At the deep section
of the flume, the wave height to water depth ratio is A0/h0 = 0.12, and the wave celerity is
c= √

g(h0 + A0) = 0.915m/s. The viscosity is set to zero. The number of grid points in x and z
directions (M × N ) are 600 × 10 and a time step of �t = 0.005 s is applied. The initial position
of wave crest is located at x = − 0.8m. A known inflow is considered at the left and a radiation
boundary is applied to the right.

The comparison of water surface profiles at four positions between numerical results, theoretical
predictions and estimated experimental data for no viscous damping are presented in Figure 10.
The numerical results exhibit the fission phenomenon quite good. Because of the difference in the
predicted wave height by numerical and analytical calculations and that of experimental data, the
wave celerity and the time that the wave crest reaches positions 3 and 4 are a little different in
these three cases. Thus, in Figure 10, only the water surface profiles are compared. At position 4,
the numerical results show a relative height of 151% for the larger wave and 55% for the smaller
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Figure 11. Comparisons of the free-surface elevation for nonlinear sinusoidal wave propagation
along the wave channel between numerical results (solid line) and experimental data (circles).

The amplitudes are expressed in cm.
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one, as compared to the initial wave height. This result matches other numerical and analytical
predictions (e.g. 150 and 52% from Reference [22], 167 and 71% for a longer distance analytical
approximation from Reference [21], 145 and 65% from Reference [12]).

4.4. Nonlinear short wave propagation in a constant water depth

A nonlinear progressive short wave in intermediate water depth assuming an inviscid flow is a test
case used to validate the dynamic pressure and nonlinear behaviour predicted by the model against
experimental data. The wave propagates from left to right along a 35.54m long, 40 cm deep wave
flume, with the initial water elevation being set to zero. A sinusoidal velocity distribution, with wave
amplitude of A= 4.2 cm, is imposed at the left boundary to simulate the action of the hinge-type
wave maker. A combination of a sponge layer and a radiation boundary condition is applied at the
outflow boundary. The wave period is T = 2.5 s. The linear wave theory is invalid in this case. The
numerical parameters used in this test case are: �x = 0.1m, �z = 0.05m, �t = 0.01 s. Figure 11
shows comparisons of the predicted free-surface elevation along the flume with experimental
data. The numerical results are in good agreement with experimental data reported by Chapalain
et al. [23]. Close to the left boundary at x = 0m, the wave profile is quasi-sinusoidal. At increasing
distances an asymmetry develops that forms a small secondary crest in the trough of the primary
wave at x = 7.0m. The progression along the channel discloses a slow return to quasi-sinusoidal
profile at x = 14.0m. This structure of length equal to almost three times the wave length reappears
beyond this point [23].

5. CONCLUSIONS

A fully dynamic numerical model is developed to simulate free surface flow in a two-dimensional
vertical plane. Finite volume method with an implicit scheme on a sigma coordinate grid layout
is applied which assures local and global mass conservation. The sigma coordinate grid layout is
chosen as the computational mesh, which enables the model to simulate free-surface flows over
irregular geometries. The proposed implicit treatment of non-hydrostatic pressure at the top layer,
similar to the lower layers, makes the model free of any hydrostatic pressure assumption. It was
found that this treatment enables the simulation of free surface elevation and wave celerity more
accurately.

The numerical solution consists of a ‘projection method’ which solves the momentum equation
without the pressure term in the first step. This step is called the ‘advection–diffusion’ step. In the
second step the continuity and the momentum equations with only the pressure term are solved.
A block tri-diagonal system of equations in terms of the pressure as the unknown is the result of
this step which can be solved directly with no iteration required. The main bulk of the CPU time
is spent for second step. Deploying time splitting method and excluding nonlinear terms in this
step reduces the size of matrix system noticeably and decreases the execution time. Furthermore,
one is free to use different numerical schemes for each step e.g. explicit upwind scheme for
advection, implicit central method for diffusion. Because of the fast double sweep algorithm used
in solving the tri-diagonal system of equations, it can be presumed that this model performs faster
as compared to the models using iterative techniques.

The model is validated by several free surface tests with noticeable vertical accelerations.
In modelling progressive linear short wave the results for free-surface elevation, wave celerity,
velocities and dynamic pressure are in close agreement with analytical. In the case of solitary
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wave propagation in a constant water depth, the model accurately predicts free-surface elevation
and velocities. Satisfactory predictions for solitary wave propagation over variable water depth
are obtained which shows the ability of the model for simulating non-linear wave propagation in
shoaling region. At last in the test of nonlinear progressive short wave, close agreement between
numerical results and experimental data is observed which assures the capability of model for
simulating non-linear short wave with significant vertical acceleration.

The extension of the present 2DV to a fully 3D model is in progress by the authors.
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